
Swaptacular Messaging Protocol

Evgeni Pandurksi

2024-05-20

Contents
Overview 1

Incoming messages 3
ConfigureAccount . 3
PrepareTransfer . 5
FinalizeTransfer . 8

Outgoing messages 10
RejectedConfig . 10
RejectedTransfer . 11
PreparedTransfer . 12
FinalizedTransfer . 13
AccountUpdate . 15
AccountPurge . 19
AccountTransfer . 19

Requirements for Client Implementations 21
RT record . 21

Received RejectedTransfer message 22
Received PreparedTransfer message 22
Received FinalizedTransfer message 22

AD record . 23
Received AccountUpdate message 23
Received AccountPurge message 24

AL record . 24
Received AccountTransfer message 24

Overview
This protocol is centered around two types of actors: debtors and creditors. A
debtor is a person or an organization that manages a digital currency. A creditor
is a person or an organization that owns tokens in one or more debtors’ digital

1

currencies. The relationship is asymmetrical: Currency tokens express the fact
that the debtor owes something to the creditor. Although a creditor theoretically
can have a negative account balance, the relationship is not supposed to work in
this direction. The protocol supports the following operations:

1. Creditors can open accounts with debtors.1
2. Creditors can re-configure existing accounts. Notably, creditors can sched-

ule accounts for deletion, and specify an amount on the account, that is
considered negligible.

3. Creditors can safely delete existing accounts with debtors. The emphasis
is on safely. When the balance on one account is not zero, deleting the
account may result in a loss of non-negligible amount of money (tokens of
the digital currency). Even if the balance was negligible at the moment of
the deletion request, there might have been a pending incoming transfer
to the account, which would be lost had the account been deleted without
the necessary precautions. To achieve safe deletion, this protocol requires
that the account is scheduled for deletion, and the system takes care to
delete the account when (and if) it is safe to do so.

4. Creditors can transfer money from their account to other creditors’ accounts.
Transfers are possible only between account in the same currency (that is:
same debtor). The execution of the transfer follows the "two phase commit"
paradigm. First the transfer is prepared, and then finalized (committed or
dismissed). A successfully prepared transfer promises a virtual certainty
for the success of the eventual subsequent commit. This paradigm allows
many transfers to be committed atomically. Enabling circular exchanges
between different currencies is an important goal of this protocol.

5. Creditors receive notification events for every non-negligible transfer in
which they participate (that is: all outgoing transfers, and all non-negligible
incoming transfers). Those notification events are properly ordered, so
that the creditor can reliably assemble the transfer history for each account
(the account ledger).

6. Actors other than creditors (called coordinators), can make transfers from
one creditor’s account to another creditor’s account. This can be useful for
implementing automated direct debit, and a wide range of other automated
exchange systems. In fact, when a currency holder (aka creditor) makes
a transfer, it is treated as a transfer initiated by a coordinator of type
"direct". When a currency issuer (aka debtor) creates new money into
existence, this is treated as a transfer initiated by a coordinator of type
"issuing".

It is important to note that the currency issuers (aka the debtors) use the same
protocol to communicate with the accounting server as the currency holders
(aka the creditors). The "only" difference is that issuers’ accounts (also called
debtors’ accounts) will have negative account balances.

1A given creditor can have at most one account with a given debtor. This limitation greatly
simplifies the protocol, at the cost of making rare use cases less convenient. (To have more than
one account with the same debtor, the creditor will have to use more that one creditor_ids.)

2

The protocol has been designed with the following important properties in mind:

1. In case of prolonged network disconnect, creditors can synchronize their
state with the accounting server, without losing data or money.

2. Messages may arrive out-of-order, or be delivered more than once, without
causing any problems (with the exception of possible delays).

3. In the case of lost messages, or even a complete database loss on the client’s
side, eventually, the client should be able to synchronize its state with the
accounting server, without losing money (obviously some data may have
been lost).

4. The protocol is generic enough to support different "backend" implementa-
tions. For example, it should be possible to implement a proxy/adapter
that allows clients that "talk" this protocol to create bank accounts and
make bank transfers.

5. The protocol works well both with positive and negative interest rates on
creditors’ accounts.

This document defines the high-level semantics of the protocol, the mandated
behaviors in the protocol, and the structure of the protocol messages (names,
types, and descriptions of the fields). This document does not define or mandate
any particular method for message serialization and message transport. Those
topics will be discussed in separate document(s).

Note: The key words "MUST", "MUST NOT", "REQUIRED", "SHALL",
"SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in RFC
2119.

Incoming messages
Incoming massages are messages that the clients send to the accounting server.
There are 3 types of incoming messages:

ConfigureAccount
Upon receiving this message, the server makes sure that the specified account
exists, and updates its configuration settings.2

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id, identifies the account.3

2As a rough guideline, on average, ConfigureAccount messages for one account should not
be sent more often than once per minute.

3All creditor_ids between 0 and 4294967295 are reserved. Implementations SHOULD
NOT use numbers in this interval for creditor’s accounts. In particular, implementations
SHOULD use the account with creditor_id = 0 (the debtor’s account) to issue new currency
tokens in circulation.

3

negligible_amount : float The maximum amount that can be considered
negligible. This MUST be a finite non-negative number. It can be used to:
1) decide whether an account can be safely deleted; 2) decide whether an
incoming transfer is insignificant; 3) decide whether to allow new currency
tokens to be issued (when the account is a debtor’s account).

config_flags : int32 Account configuration bit-flags. Different server imple-
mentations may use these flags for different purposes.

The lowest 16 bits are reserved:

Bit 0 has the meaning "scheduled for deletion". If all of the following
conditions are met, an account SHOULD eventually be removed from the
server’s database:4

• The account is "scheduled for deletion".
• At least one day has passed since account’s creation.5
• Account’s configuration have not been updated for at least

MAX_CONFIG_DELAY seconds.6
• There are no outgoing prepared transfers (for which the account is

the sender) that await finalization (see PreparedTransfer).
• There are no incoming prepared transfers (for which the account is the

recipient) that await finalization and have not missed their deadlines
already.

• If the account gets removed from the server’s database, it is not
possible the owner of the account to lose an amount bigger than the
negligible_amount. Note that unless the negligible amount is huge,
or the owner of the account has an alternative way to access his funds,
this implies that the account can not receive incoming transfers after
being deleted.

If those condition are not met, accounts MUST NOT be removed. Some
time after an account has been removed from the server’s database, an
AccountPurge message MUST be sent to inform about this.

Bits from 1 to 15 may be used in future version of this specification.

config_data : string Additional account configuration settings. Different
server implementations may use different formats for this field.7 An

4When an account with a non-zero principal is being deleted, an AccountTransfer message
SHOULD be sent, informing the owner of the account about the zeroing out of the account’s
principal before the deletion.

5Note that an account can be removed from the server’s database, and then a new account
with the same debtor_id and creditor_id can be created. In those cases care MUST be
taken, so that the newly created account always has a later creation_date, compared to the
preceding account. The most straightforward way to achieve this is not to remove accounts on
the same day on which they have been created.

6MAX_CONFIG_DELAY determines how far in the past a ConfigureAccount message should be
in order to be ignored. The intention is to avoid the scenario in which an account is removed
from server’s database, but an old, wandering ConfigureAccount message "resurrects" it.

7The UTF-8 encoding of the config_data string MUST NOT be longer than 2000 bytes.

4

empty string MUST always be a valid value, which represents the default
configuration settings.

ts : date-time The moment at which this message was sent (the message’s
timestamp). For a given account, later ConfigureAccount messages MUST
have later or equal timestamps, compared to earlier messages.

seqnum : int32 The sequential number of the message. For a given account,
later ConfigureAccount messages SHOULD have bigger sequential numbers,
compared to earlier messages. Note that when the maximum int32 value
is reached, the next value SHOULD be -2147483648 (signed 32-bit integer
wrapping).

When server implementations process a ConfigureAccount message, they MUST
first verify whether the specified account already exists:

1. If the specified account already exists, the server implementation MUST
decide whether the same or a later ConfigureAccount message has been
applied already.8 9 If the received message turns out to be an old one, it
MUST be ignored. Otherwise, an attempt MUST be made to update the
account’s configuration with the requested new configuration. If the new
configuration has been successfully applied, an AccountUpdate message
MUST be sent; otherwise a RejectedConfig message MUST be sent.

2. If the specified account does not exist, the message’s timestamp MUST
be checked. If it is more that MAX_CONFIG_DELAY seconds in the past, the
message MUST be ignored. Otherwise, an attempt MUST be made to
create a new account with the requested configuration settings.10 11 If
a new account has been successfully created, an AccountUpdate message
MUST be sent; otherwise a RejectedConfig message MUST be sent.

PrepareTransfer
Upon receiving this message, the server tries to secure some amount, to eventually
make a transfer from sender’s account to recipient’s account.

debtor_id : int64 The ID of the debtor.
8To decide whether a ConfigureAccount message has been applied already, server imple-

mentations MUST compare the values of ts and seqnum fields in the received message, to
the values of these fields in the latest applied ConfigureAccount message. ts fields MUST be
compared first, and only if they are equal, seqnum fields MUST be compared as well.

9Note that when comparing "seqnum" fields, server implementations MUST correctly deal
with the possible 32-bit integer wrapping. For example, to decide whether seqnum2 is later than
seqnum1, the following expression may be used: 0 < (seqnum2 - seqnum1) % 0x100000000 <
0x80000000. Timestamps must also be compared with care, because precision might have been
lost when they were saved to the database.

10The principal (the amount that the debtor owes to the creditor, without the interest), and
the accumulated interest on newly created accounts MUST be zero.

11When messages arrive out-of-order, it is possible the server to receive a ConfigureAccount
message from a client, which requests a new account to be created with its "scheduled for
deletion" flag set. When this happens, server implementations MUST NOT reject to create
the account solely for the reason that the "scheduled for deletion" flag is set.

5

creditor_id : int64 Along with debtor_id, identifies the sender’s account.

coordinator_type : string Indicates the subsystem which sent this message.
MUST be between 1 and 30 symbols, ASCII only.

The coordinator type "direct" is reserved for payments initiated di-
rectly by the owner of the account (the creditor), and for such transfers
coordinator_id MUST be equal to creditor_id.

The coordinator type "agent" is reserved for transfers initiated by
creditors agents on behalf of creditors that they represent, and for such
transfers coordinator_id MUST be a number in the interval of creditor
IDs reserved for the given creditors agent. The following special rules apply
for transfers with "agent" coordinator type:

• For transfers with "agent" coordinator type, if there are no other im-
pediments to the transfer, the transfer MUST be prepared successfully
even when the recipient’s account is scheduled for deletion.

• Incoming transfers with "agent" coordinator type MUST NOT be
treated as negligible transfers.12

• Transfers with "agent" coordinator type MUST NOT be allowed
between accounts managed by different creditors agents.

The coordinator type "issuing" is reserved for transfers which create
new money into existence, and for such transfers coordinator_id MUST
be equal to debtor_id, and the creditor_id of the sender MUST be 0.

The coordinator type "interest" MUST be used for transfers initiated
by the interest capitalization service.

The coordinator type "delete" MUST be used for transfers which zero
out the principal on deleted accounts.

coordinator_id : int64 Along with coordinator_type, identifies the client
that sent this message (the coordinator).

coordinator_request_id : int64 Along with coordinator_type and
coordinator_id, uniquely identifies this message from the coordinator’s
point of view, so that the coordinator can pair this request with the
received response message.

min_locked_amount : int64 The secured amount MUST be equal or bigger
than this value. This value MUST be a non-negative number.13

12A negligible transfer is an incoming transfer whose coordinator type is different from "agent",
and for which the transferred amount does not exceed the negligible_amount configured for
the recipient’s account (that is: 0 < acquired_amount <= negligible_amount).

13If min_locked_amount is zero, and there are no other impediments to the transfer, the
transfer MUST be prepared successfully even when the amount available on the account is
zero or less. (In this case, the secured amount will be zero.) This is useful when the sender
wants to verify whether the recipient’s account exists and accepts incoming transfers.

6

max_locked_amount : int64 The secured amount MUST NOT exceed
this value. This value MUST be equal or bigger than the value of
min_locked_amount.

recipient : string A string which (along with debtor_id) publicly and globally
identifies the recipient’s account.14

final_interest_rate_ts : date-time When the transferred amount would
need to be changed if the interest rate on the account had been changed
unexpectedly by the server, this field specifies the onset moment of the
account’s current interest rate, from the client’s perspective. For plain
transfers, this field SHOULD represent a moment in the very distant future
("9999-12-31T23:59:59+00:00" for example).

If the interest rate on the account has been changed after the moment
specified by this field, the server MUST NOT allow the transfer.

max_commit_delay : int32 The period (in seconds) during which the pre-
pared transfer can be committed successfully. This instructs the server
that the generated deadline for the prepared transfer MUST NOT be
later than this message’s timestamp (the ts field) plus max_commit_delay
seconds. This MUST be a non-negative number. If the client does not
want the deadline for the transfer to be shorter than normal, this field
should be set to some huge number. Normally, this would be 2147483647.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

When server implementations process a PrepareTransfer message they:

• MUST NOT allow a transfer without verifying that the recipient’s account
accepts incoming transfers.15

• MUST NOT allow a transfer in which the sender and the recipient is the
same account.

• MUST try to secure as big amount as possible amount within the requested
limits (between min_locked_amount and max_locked_amount).

• MUST guarantee that if a transfer is successfully prepared, it is certain that
the eventual commit of the secured amount (although reduced according
to the demurrage rate16) will be successful. Notably, the secured amount

14The account identifier MUST have at most 100 symbols, ASCII only. Different server
implementations may use different formats for this identifier. Note that creditor_id is an ID
which is known only to the client that created the account. The account identifier (along with
debtor_id), on the other hand, MUST provide enough information to publicly and globally
identify the account (an IBAN for example).

15Except for transfers to the debtor’s account, and transfers with special coordinator types,
server implementations must not accept incoming transfers for deleted or "scheduled for
deletion" accounts. That is: PrepareTransfer messages with non-special coordinator_types,
that have a non-existing or "scheduled for deletion" creditor’s account as a recipient, MUST be
rejected. Note that the only special coordinator type defined in this specification is "agent".

16Note that when the interest rate on a given account is negative, the secured (locked)
amount will be gradually consumed by the accumulated interest. Therefore, at the moment

7

MUST be locked, so that until the prepared transfer is finalized, the amount
is not available for other transfers.

• If the requested transfer has been successfully prepared, MUST send a
PreparedTransfer message, and MUST create a new prepared transfer
record in the server’s database, which stores all the data sent with the
PreparedTransfer message.

• If the requested transfer can not be prepared, MUST send a Rejected-
Transfer message.

An important practical case is when min_locked_amount and max_locked_amount
are both equal to zero. In this case no amount will be secured, and whether the
transfer will be successful or not will depend on whether the committed_amount,
sent with the FinalizeTransfer message, will be available at the time of the
commit.

FinalizeTransfer
Upon receiving this message, the server finalizes a prepared transfer.

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id, identifies the sender’s account.

transfer_id : int64 The opaque ID generated for the prepared transfer. This
ID, along with debtor_id and creditor_id, uniquely identifies the pre-
pared transfer that has to be finalized.

coordinator_type : string MUST contain the value of the coordinator_type
field in the PrepareTransfer message that has been sent to prepare the
transfer.

coordinator_id : int64 MUST contain the value of the coordinator_id field
in the PrepareTransfer message that has been sent to prepare the transfer.

of the prepared transfer’s commit, it could happen that the committed amount exceeds the
remaining amount by a considerable margin. In such cases, the commit should be unsuccessful.
Also, note that when a PrepareTransfer request is being processed by the server, it can not be
predicted what amount will be available on the sender’s account at the time of the transfer’s
commit. For this reason, when a PreparedTransfer message is sent, the server should set the
value of the demurrage_rate field correctly, so as to inform the client (the coordinator) about
the worst possible case.

Here is an example how this may work, from the viewpoint of a coordinator who is trying
to commit a conditional transfer: The coordinator sends a PrepareTransfer message for the
conditional transfer, which he knows, because of the still unrealized condition, will take up to
1 month to get finalized. Then, a PreparedTransfer message for this transfer is received, with
a locked_amount of 1000, and a demurrage_rate of -21.5 percent. The coordinator figures out
that if he keeps this prepared transfer around without finalizing it, for each passed month, up
to 2% of the locked amount will be eaten up (0.98 to the power of 12 is 0.785, which equals
100% - 21.5%). Therefore, the coordinator can calculate that in order to be certain that,
after one month, he will be able to commit this prepared transfer successfully, the committed
amount should not exceed 980. (That is: The value of the committed_amount field in the
FinalizeTransfer message that the coordinator sends to commit the transfer, should not exceed
980.)

8

coordinator_request_id : int64 MUST contain the value of the
coordinator_request_id field in the PrepareTransfer message that has
been sent to prepare the transfer.

committed_amount : int64 The amount that has to be transferred.17 This
MUST be a non-negative number. A 0 signifies that the transfer MUST
be dismissed.

transfer_note : string A string that the coordinator (the client that finalizes
the prepared transfer) wants the recipient and the sender to see.18

Server implementations MAY further limit on the maximal allowed byte-
length of the UTF-8 encoding of this string, as long as the limit is correctly
stated in the transfer_note_max_bytes field in AccountUpdate messages.

If the transfer is being dismissed, this field will be ignored, and SHOULD
contain an empty string.

transfer_note_format : string The format used for the transfer_note
string. An empty string signifies unstructured text.19

If the transfer is being dismissed, this field will be ignored, and SHOULD
contain an empty string.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

When server implementations process a FinalizeTransfer message, they MUST
first verify whether a matching prepared transfer exists in server’s database:20

1. If the specified prepared transfer exists, server implementations MUST:
• Try to transfer the committed_amount from the sender’s account to

the recipient’s account. (When the committed amount is zero, this
would be a no-op.) The transfer SHOULD NOT be allowed if, after
the transfer, the available amount21 on the sender’s account would
become negative. 22

17The committed_amount can be smaller, equal, or bigger than the secured (locked) amount.
18The UTF-8 encoding of the transfer_note string MUST NOT be longer than 500 bytes.
19The value of the transfer_note_format field MUST match the regular expression

ˆ[0-9A-Za-z.-]{0,8}$.
20The matching prepared transfer MUST have the same values for the

debtor_id, creditor_id, transfer_id, coordinator_type, coordinator_id, and
coordinator_request_id fields as the received FinalizeTransfer message.

21The available amount is the amount that the debtor owes to the creditor (including the
accumulated interest), minis the total sum secured (locked) for prepared transfers. Note that
the available amount can be a negative number.

22To issue new tokens into existence, the server SHOULD use a special account called "the
debtor’s account" (or "the root account"). The debtor’s account is special in the following ways:

– The creditor_id for the debtor’s account is 0.
– The balance on the debtor’s account is allowed to go negative, as long as it does not

exceed the configured negligible_amount for the account (with a negative sign). This
gives debtors agents the option to reliably restrict the total amount that a debtor is
allowed to issue.

9

• Unlock the remainder of the secured (locked) amount, so that it
becomes available for other transfers.

• Remove the prepared transfer from the server’s database.
• Send a FinalizedTransfer message.23 Note that the amount transferred

to the recipient’s account MUST be either zero (when the transfer has
been dismissed or unsuccessful), or equal to the committed_amount
(when the transfer has been successful).

2. If the specified prepared transfer does not exist, the message MUST be
ignored.

Outgoing messages
Outgoing massages are messages that the accounting server sends to the clients.
There are 7 types of incoming messages:

RejectedConfig
Emitted when a ConfigureAccount request has been rejected.

debtor_id : int64 The value of the debtor_id field in the rejected message.

creditor_id : int64 The value of the creditor_id field in the rejected mes-
sage.

config_ts : date-time The value of the ts field in the rejected message.

config_seqnum : int32 The value of the seqnum field in the rejected message.

config_flags : int32 The value of the config_flags field in the rejected mes-
sage.

negligible_amount : float The value of the negligible_amount field in the
rejected message.

– Interest is not accumulated on the debtor’s account.
– All interest payments to/from creditor’s accounts, come from/to the debtor’s account.
– AccountTransfer messages are not sent for transfers from/to the debtor’s account. This

eliminates a potentially huge amount of network traffic towards the debtor’s account,
especially for interest payments.

– Each debtor can use its debtor’s account config_data text field, to configure various
important parameters of the currency (like the interest rate). The format for the
config_data text field will be specified in separate document(s).

– The debtor’s account should always be able to receive incoming transfers, even if it does
not exist yet, or is "scheduled for deletion". Transferring money to the debtor’s account is
equivalent to "destroying" the money.

23If the prepared transfer has been committed successfully, AccountUpdate messages will
be sent eventually, and for non-negligible transfers, AccountTransfer messages will be sent
eventually as well.

10

config_data : string The value of the config_data field in the rejected mes-
sage.24

rejection_code : string The reason for the rejection of the ConfigureAccount
request. MUST be between 0 and 30 symbols, ASCII only.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

RejectedTransfer
Emitted when a request to prepare a transfer has been rejected.

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id identifies the sender’s account.

coordinator_type : string Indicates the subsystem which requested the
transfer. MUST be between 1 and 30 symbols, ASCII only.

coordinator_id : int64 Along with coordinator_type, identifies the client
that requested the transfer (the coordinator).

coordinator_request_id : int64 Along with coordinator_type and
coordinator_id, uniquely identifies the rejected request from the
coordinator’s point of view, so that the coordinator can pair this message
with the issued request to prepare a transfer.

status_code : string The reason for the rejection of the transfer. MUST be
between 0 and 30 symbols, ASCII only. The value MUST not be "OK".25

total_locked_amount : int64 When the transfer has been rejected due to
insufficient available amount, this field SHOULD contain the total sum
secured (locked) for prepared transfers on the account. This MUST be a
non-negative number.

24The UTF-8 encoding of the config_data string MUST NOT be longer than 2000 bytes.
25The mandatory status codes which MUST be used are:

• "SENDER_IS_UNREACHABLE" signifies that the sender’s account does not exist, or can not
make outgoing transfers.

• "RECIPIENT_IS_UNREACHABLE" signifies that the recipient’s account does not exist, or
does not accept incoming transfers.

• "TIMEOUT" signifies that the transfer has been terminated due to expired deadline.
• "NEWER_INTEREST_RATE" signifies that the transfer has been terminated because

the current interest rate on the account is more recent than the specified
final_interest_rate_ts.

• "TRANSFER_NOTE_IS_TOO_LONG" signifies that the transfer has been rejected because the
transfer note’s byte-length is too big.

• "INSUFFICIENT_AVAILABLE_AMOUNT" signifies that the transfer has been rejected due to
insufficient amount available on the account.

11

ts : date-time The moment at which this message was sent (the message’s
timestamp).

PreparedTransfer
Emitted when a new transfer has been prepared, or to remind that a prepared
transfer has to be finalized.

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id identifies the sender’s account.

transfer_id : int64 An opaque ID generated for the prepared transfer. This
ID, along with debtor_id and creditor_id, uniquely identifies the pre-
pared transfer.

coordinator_type : string Indicates the subsystem which requested the
transfer. MUST be between 1 and 30 symbols, ASCII only.

coordinator_id : int64 Along with coordinator_type, identifies the client
that requested the transfer (the coordinator).

coordinator_request_id : int64 Along with coordinator_type and
coordinator_id, uniquely identifies the accepted request from the
coordinator’s point of view, so that the coordinator can pair this message
with the issued request to prepare a transfer.

locked_amount : int64 The secured (locked) amount for the transfer. This
MUST be a non-negative number.

recipient : string The value of the recipient field in the corresponding Pre-
pareTransfer message.

prepared_at : date-time The moment at which the transfer was prepared.

demurrage_rate : float The annual rate (in percents) at which the secured
amount will diminish with time, in the worst possible case. This MUST

12

be a number between -100 and 0.26 27 28

deadline : date-time The prepared transfer can be committed successfully
only before this moment. If the client ties to commit the prepared transfer
after this moment, the commit MUST NOT be successful.

final_interest_rate_ts : date-time The value of the final_interest_rate_ts
field in the corresponding PrepareTransfer message.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

If a prepared transfer has not been finalized (committed or dismissed) for a long
while (1 week for example), the server MUST send another PreparedTransfer
message, identical to the previous one (except for the ts field), to remind that a
transfer has been prepared and is waiting for a resolution. This guarantees that
prepared transfers will not remain in the server’s database forever, even in the
case of a lost message, or a complete database loss on the client’s side.

FinalizedTransfer
Emitted when a transfer has been finalized (committed or dismissed).

debtor_id : int64 The ID of the debtor.
26There is a trick that opportunistic creditors may try, to evade incurring negative interest

on their accounts. The trick is to prepare a transfer from one account to another account for
the whole available amount, wait for some long time, then commit the prepared transfer and
abandon the first account (whose balance at that point would be significantly negative).

27Note that when the interest rate on a given account is negative, the secured (locked)
amount will be gradually consumed by the accumulated interest. Therefore, at the moment
of the prepared transfer’s commit, it could happen that the committed amount exceeds the
remaining amount by a considerable margin. In such cases, the commit should be unsuccessful.
Also, note that when a PrepareTransfer request is being processed by the server, it can not be
predicted what amount will be available on the sender’s account at the time of the transfer’s
commit. For this reason, when a PreparedTransfer message is sent, the server should set the
value of the demurrage_rate field correctly, so as to inform the client (the coordinator) about
the worst possible case.

Here is an example how this may work, from the viewpoint of a coordinator who is trying
to commit a conditional transfer: The coordinator sends a PrepareTransfer message for the
conditional transfer, which he knows, because of the still unrealized condition, will take up to
1 month to get finalized. Then, a PreparedTransfer message for this transfer is received, with
a locked_amount of 1000, and a demurrage_rate of -21.5 percent. The coordinator figures out
that if he keeps this prepared transfer around without finalizing it, for each passed month, up
to 2% of the locked amount will be eaten up (0.98 to the power of 12 is 0.785, which equals
100% - 21.5%). Therefore, the coordinator can calculate that in order to be certain that,
after one month, he will be able to commit this prepared transfer successfully, the committed
amount should not exceed 980. (That is: The value of the committed_amount field in the
FinalizeTransfer message that the coordinator sends to commit the transfer, should not exceed
980.)

28The value of the demurrage_rate field in PreparedTransfer messages SHOULD be equal
to the most negative interest rate that is theoretically possible to occur on any of the accounts
with the given debtor, between the transfer’s preparation and the transfer’s commit. Note
that the current interest rate on the sender’s account is not that important, because it can
change significantly between the transfer’s preparation and the transfer’s commit.

13

creditor_id : int64 Along with debtor_id identifies the sender’s account.

transfer_id : int64 The opaque ID generated for the prepared transfer. This
ID, along with debtor_id and creditor_id, uniquely identifies the final-
ized prepared transfer.

coordinator_type : string Indicates the subsystem which requested the
transfer. MUST be between 1 and 30 symbols, ASCII only.

coordinator_id : int64 Along with coordinator_type, identifies the client
that requested the transfer (the coordinator).

coordinator_request_id : int64 Along with coordinator_type and
coordinator_id, uniquely identifies the finalized prepared transfer from
the coordinator’s point of view, so that the coordinator can pair this
message with the issued request to finalize the prepared transfer.

committed_amount : int64 The transferred (committed) amount. This
MUST always be a non-negative number. A 0 means either that the
prepared transfer was dismissed, or that it was committed, but the commit
was unsuccessful for some reason.

status_code : string The finalization status. MUST be between 0 and 30
symbols, ASCII only. If the prepared transfer was committed, but the
commit was unsuccessful for some reason, this value MUST be different
from "OK", and SHOULD hint at the reason for the failure.29 30 In all
other cases, this value MUST be "OK".

total_locked_amount : int64 When the transfer has been rejected due to
insufficient available amount, this field SHOULD contain the total sum
secured (locked) for prepared transfers on the account, after this transfer
has been finalized. This MUST be a non-negative number.

prepared_at : date-time The moment at which the transfer was prepared.
29The mandatory status codes which MUST be used are:

• "SENDER_IS_UNREACHABLE" signifies that the sender’s account does not exist, or can not
make outgoing transfers.

• "RECIPIENT_IS_UNREACHABLE" signifies that the recipient’s account does not exist, or
does not accept incoming transfers.

• "TIMEOUT" signifies that the transfer has been terminated due to expired deadline.
• "NEWER_INTEREST_RATE" signifies that the transfer has been terminated because

the current interest rate on the account is more recent than the specified
final_interest_rate_ts.

• "TRANSFER_NOTE_IS_TOO_LONG" signifies that the transfer has been rejected because the
transfer note’s byte-length is too big.

• "INSUFFICIENT_AVAILABLE_AMOUNT" signifies that the transfer has been rejected due to
insufficient amount available on the account.

30When the value of the status_code field is different from "OK", the committed_amount
MUST be zero.

14

ts : date-time The moment at which this message was sent (the message’s
timestamp). This MUST be the moment at which the transfer was com-
mitted.

AccountUpdate
Emitted if there has been a meaningful change in the state of an account31, or
to remind that an account still exists.

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id, identifies the account.

creation_date : date The date on which the account was created. Until the
account is removed from the server’s database, its creation_date MUST
NOT be changed.

last_change_ts : date-time The moment at which the latest meaningful
change in the state of the account has happened. For a given account, later
AccountUpdate messages MUST have later or equal last_change_tss,
compared to earlier messages.

last_change_seqnum : int32 The sequential number of the latest mean-
ingful change. For a given account, later changes MUST have bigger
sequential numbers, compared to earlier changes. Note that when the
maximum int32 value is reached, the next value MUST be -2147483648
(signed 32-bit integer wrapping).32 33

principal : int64 The amount that the debtor owes to the creditor, without
the interest. This can be a negative number.

interest : float The amount of interest accumulated on the account up to the
last_change_ts moment, which is not added to the principal yet. Once
in a while, the accumulated interest MUST be zeroed out and added to

31Every change in the value of one of the fields included in AccountUpdate messages (except
for ts and ttl fields) should be considered meaningful, and therefore an AccountUpdate
message MUST eventually be emitted to inform about the change. There is no requirement,
though, AccountUpdate messages to be emitted instantly, following each individual change.
For example, if a series of transactions are committed on an account in a short period of time,
the server SHOULD emit only one AccountUpdate message, announcing only the final state
of the account. As a rough guideline, on average, AccountUpdate messages for one account
should not be sent more often than once per hour.

32creation_date, last_change_ts, and last_change_seqnum can be used to reliably deter-
mine the correct order in a sequence of AccountUpdate massages, even if the changes occurred
in a very short period of time. When considering two changes, creation_date fields MUST be
compared first, if they are equal last_change_ts fields MUST be compared, and if they are
equal, last_change_seqnum fields MUST be compared as well.

33Note that when comparing "seqnum" fields, server implementations MUST correctly deal
with the possible 32-bit integer wrapping. For example, to decide whether seqnum2 is later than
seqnum1, the following expression may be used: 0 < (seqnum2 - seqnum1) % 0x100000000 <
0x80000000. Timestamps must also be compared with care, because precision might have been
lost when they were saved to the database.

15

the principal (an interest payment). Note that the accumulated interest
can be a negative number, but MUST be finite.34

interest_rate : float The annual rate (in percents) at which interest accumu-
lates on the account. This can be a negative number, but MUST NOT be
smaller than -100, and MUST be finite.

When the interest_rate on the account changes, the server MUST send
an AccountUpdate message to inform about this change as soon as possible.

last_interest_rate_change_ts : date-time The moment at which the
latest change in the account’s interest rate happened. For a given
account, later AccountUpdate messages MUST have later or equal
last_interest_rate_change_tss, compared to earlier messages. The
minimum time interval between two changes in the account’s interest rate
MUST be big enough so as to provide a reasonable guarantee that, even
in case of a temporary network disconnect35, at least 24 hours have passed
since the AccountUpdate message sent for the previous interest rate change
has been processed by the client. 36 If there have not been any changes in
the interest rate yet, the value MUST be "1970-01-01T00:00:00+00:00".

last_config_ts : date-time MUST contain the value of the ts field in the
latest applied ConfigureAccount message. If there have not been any
applied ConfigureAccount messages yet, the value MUST be "1970-01-
01T00:00:00+00:00".

last_config_seqnum : int32 MUST contain the value of the seqnum field in
the latest applied ConfigureAccount message. If there have not been any
applied ConfigureAccount messages yet, the value MUST be 0.37

negligible_amount : float The value of the negligible_amount field in the
latest applied ConfigureAccount message. If there have not been any
applied ConfigureAccount messages yet, the value MUST represent the
current configuration settings. This MUST always be a finite non-negative
number.

config_flags : int32 The value of the config_flags field in the latest applied
ConfigureAccount message. If there have not been any applied ConfigureAc-
count messages yet, the value MUST represent the current configuration
settings.

34The accumulated interest MUST be available for transfers. That is: the owner of the
account has to be able to "wire" the accumulated interest to another account. Accordingly,
accumulated negative interest MUST be subtracted from the account’s available amount.

35Client and server implementations SHOULD expect, and be able to handle uneventfully,
network disconnects that last for at least 7 days.

36Therefore, any two changes in the account’s interest rate SHOULD be separated by at
least 8 days.

37Note that clents can use last_config_ts and last_config_seqnum to determine whether
a sent ConfigureAccount message has been applied successfully.

16

config_data : string The value of the config_data field in the latest applied
ConfigureAccount message. If there have not been any applied ConfigureAc-
count messages yet, the value MUST represent the current configuration
settings.38

account_id : string A string which (along with debtor_id) publicly and
globally identifies the account.39 An empty string indicates that the
account does not have an identity yet. 40 Once the account have got an
identity, the identity MUST NOT be changed until the account is removed
from the server’s database.

debtor_info_iri : string A link (Internationalized Resource Identifier) for
obtaining information about the account’s debtor. This provides a reliable
way for creditors to get up-to-date information about the debtor. Note
that changing the IRI will likely cause the clients to make requests to the
new IRI, so as to obtain updated information about the debtor. The link
MUST have at most 200 Unicode characters. If no link is available (which
is NOT RECOMMENDED), the value SHOULD be an empty string.

debtor_info_content_type : string The content type of the document that
the debtor_info_iri link refers to. It MUST have at most 100 symbols,
ASCII only. If no link is available, or the content type of the document is
unknown (which is NOT RECOMMENDED), the value SHOULD be an
empty string.

debtor_info_sha256 : bytes The SHA-256 cryptographic hash of the con-
tent of the document that the debtor_info_iri link refers to. MUST
contain exactly 0, or exactly 32 bytes. If no link is available, or the
SHA-256 cryptographic hash of the document is unknown (which is NOT
RECOMMENDED), the value SHOULD contain 0 bytes.

last_transfer_number : int64 MUST contain the value of the transfer_number
field in the latest emitted AccountTransfer message for the account.
If since the creation of the account there have not been any emitted
AccountTransfer messages, the value MUST be 0.

last_transfer_committed_at : date-time MUST contain the value of the
committed_at field in the latest emitted AccountTransfer message for
the account. If since the creation of the account there have not been
any emitted AccountTransfer messages, the value MUST be "1970-01-
01T00:00:00+00:00".

demurrage_rate : float The demurrage rate (in percents) for new prepared
38The UTF-8 encoding of the config_data string MUST NOT be longer than 2000 bytes.
39The account identifier MUST have at most 100 symbols, ASCII only. Different server

implementations may use different formats for this identifier. Note that creditor_id is an ID
which is known only to the client that created the account. The account identifier (along with
debtor_id), on the other hand, MUST provide enough information to publicly and globally
identify the account (an IBAN for example).

40When the account does not have an identity, it can not accept incoming transfers.

17

transfers. That is: the value of the demurrage_rate field in new Pre-
paredTransfer messages. This MUST be a number between -100 and 0,
which SHOULD be the same for all accounts with the given debtor, and
SHOULD NOT be smaller than -50. 41

commit_period : int32 The maximal allowed period (in seconds) during
which new prepared transfers can be committed successfully. That is: unless
the client explicitly requested the deadline for the transfer to be shorter
than normal, the value of the deadline field in new PreparedTransfer
messages will be calculated by adding commit_period seconds to the
prepared_at timestamp. The value of this filed MUST be a non-negative
number, SHOULD be the same for all accounts with the given debtor, and
SHOULD be at least 2592000 (30 days).

transfer_note_max_bytes: int32 The maximal number of bytes that the
transfer_note field in FinalizeTransfer messages is allowed to contain
when UTF-8 encoded. This MUST be a non-negative number which does
not exceed the general limit imposed by this protocol42 , and MUST be
the same for all accounts with the given debtor. When changed, it MUST
NOT be decreased.

The value SHOULD NOT be smaller than 150.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

ttl : int32 The time-to-live (in seconds) for this message. The message
SHOULD be ignored if more than ttl seconds have elapsed since the
message was emitted (ts). This MUST be a non-negative number.

If for a given account, no AccountUpdate messages have been sent for a period
of several days (this period NOT SHOULD be longer than 2 weeks), the server
MUST send a new AccountUpdate message identical to the previous one (except
for the ts field), to remind that the account still exist. This guarantees that
accounts will not remain in the server’s database forever, even in the case of a
lost message, or a complete database loss on the client’s side. Also, this serves
the purpose of a "heartbeat", allowing clients to detect "dead" account records
in their databases.

41The value of the demurrage_rate field in PreparedTransfer messages SHOULD be equal
to the most negative interest rate that is theoretically possible to occur on any of the accounts
with the given debtor, between the transfer’s preparation and the transfer’s commit. Note
that the current interest rate on the sender’s account is not that important, because it can
change significantly between the transfer’s preparation and the transfer’s commit.

42The UTF-8 encoding of the transfer_note string MUST NOT be longer than 500 bytes.

18

AccountPurge
Emitted some time after an account has been removed from the server’s
database.43

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id, identifies the removed account.

creation_date : date The date on which the removed account was created.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

The purpose of AccountPurge messages is to inform clients that they can safely
remove a given account from their databases.

AccountTransfer
Emitted when a non-negligible committed transfer 44 has affected a creditor’s
account. Note that AccountTransfer messages are not sent for debtors’ accounts
(that is: creditor_id = 0).

debtor_id : int64 The ID of the debtor.

creditor_id : int64 Along with debtor_id, identifies the affected account.

creation_date : date The date on which the affected account was created.

transfer_number : int64 Along with debtor_id, creditor_id, and
creation_date, uniquely identifies the non-negligible committed transfer.
This MUST be a positive number. During the lifetime of a given
account, later committed transfers MUST have bigger transfer_numbers,
compared to earlier transfers.45

coordinator_type : string Indicates the subsystem which requested the
transfer. MUST be between 1 and 30 symbols, ASCII only.

sender : string A string which (along with debtor_id) identifies the sender’s
account.46 An empty string signifies that the sender is unknown.

43The AccountPurge message delay MUST be long enough to ensure that after clients have
received the AccountPurge message, if they continue to receive old, wandering AccountUpdate
messages for the purged account, those messages will be ignored (due to expired ttl).

44A negligible transfer is an incoming transfer whose coordinator type is different from "agent",
and for which the transferred amount does not exceed the negligible_amount configured for
the recipient’s account (that is: 0 < acquired_amount <= negligible_amount).

45Note that when an account has been removed from the database, and then recreated again,
the generation of transfer numbers MAY start from 1 again.

46The account identifier MUST have at most 100 symbols, ASCII only. Different server
implementations may use different formats for this identifier. Note that creditor_id is an ID
which is known only to the client that created the account. The account identifier (along with
debtor_id), on the other hand, MUST provide enough information to publicly and globally
identify the account (an IBAN for example).

19

recipient : string A string which (along with debtor_id) identifies the recipi-
ent’s account.47 An empty string signifies that the recipient is unknown.

acquired_amount : int64 The increase in the affected account’s principal
(caused by the transfer). This MUST NOT be zero. If it is a positive
number (an addition to the principal), the affected account would be the
recipient. If it is a negative number (a subtraction from the principal), the
affected account would be the sender.

transfer_note : string If the transfer has been committed by a FinalizeTrans-
fer message, this field MUST contain the value of the transfer_note field
from the message that committed the transfer. Otherwise, it SHOULD
contain information pertaining to the reason for the transfer.48

transfer_note_format : string If the transfer has been committed by
a FinalizeTransfer message, this field MUST contain the value of the
transfer_note_format field from the message that committed the trans-
fer. Otherwise, it MUST contain the format used for the transfer_note
string.49

committed_at : date-time The moment at which the transfer was commit-
ted.

principal : int64 The amount that the debtor owes to the owner of the affected
account, without the interest, after the transfer has been committed. This
can be a negative number.

ts : date-time The moment at which this message was sent (the message’s
timestamp).

previous_transfer_number : int64 MUST contain the transfer_number
of the previous AccountTransfer message that affected the same account. If
since the creation of the account, there have not been any other committed
transfers that affected it, the value MUST be 0.

Every committed transfer affects two accounts: the sender’s, and the recipient’s.
Therefore, two separate AccountTransfer messages would be emitted for each
committed non-negligible transfer.

47The account identifier MUST have at most 100 symbols, ASCII only. Different server
implementations may use different formats for this identifier. Note that creditor_id is an ID
which is known only to the client that created the account. The account identifier (along with
debtor_id), on the other hand, MUST provide enough information to publicly and globally
identify the account (an IBAN for example).

48The UTF-8 encoding of the transfer_note string MUST NOT be longer than 500 bytes.
49The value of the transfer_note_format field MUST match the regular expression

ˆ[0-9A-Za-z.-]{0,8}$.

20

Requirements for Client Implementations
RT record
Before sending a PrepareTransfer message, client implementations MUST create
a running transfer record (RT record) in the client’s database, to track the
progress of the requested transfer. The primary key for running transfer records
is the (coordinator_type, coordinator_id, coordinator_request_id) tuple.
As a minimum, RT records MUST also be able to store the values of debtor_id,
creditor_id, and transfer_id fields. RT records MUST have 3 possible
statuses:

initiated Indicates that a PrepareTransfer request has been sent, and no re-
sponse has been received yet. RT records with this status MAY be deleted
whenever considered appropriate. Newly created records MUST receive
this status.

prepared Indicates that a PrepareTransfer request has been sent, and a Pre-
paredTransfer response has been received. RT records with this status
MUST NOT be deleted. Instead, they need to be settled first (committed
or dismissed), by sending a FinalizeTransfer message.50

settled Indicates that a PrepareTransfer request has been sent, a Prepared-
Transfer response has been received, and a FinalizeTransfer message has
been sent to dismiss or commit the transfer. RT records for dismissed
transfers MAY be deleted whenever considered appropriate. RT records
for committed tranfers, however, SHOULD NOT be deleted right away.
Instead, they SHOULD stay in the database until a FinalizedTransfer
message is received for them, or a very long time has passed.51 52 53

50If a "prepared" RT record is lost due to a database crash, after some time (possibly a long
time) a PreparedTransfer message will be received again for the transfer, and the transfer will
be dismissed by the client. This must not be allowed to happen regularly, because it would
cause the server to keep the prepared transfer locks for much longer than necessary.

51The retention of committed RT records is necessary to prevent problems caused by message
re-delivery. Consider the following scenario: a transfer has been prepared and committed
(settled), but the PreparedTransfer message is re-delivered a second time. Had the RT record
been deleted right away, the already committed transfer would be dismissed the second time,
and the fate of the transfer would be decided by the race between the two different finalizing
messages. In most cases, this would be a serious problem.

52That is: if the corresponding FinalizedTransfer message has not been received for a very
long time (1 year for example), the RT record for the committed transfer MAY be deleted,
nevertheless.

53Note that FinalizedTransfer messages are emitted for dismissed transfers as well. Therefore,
the most straightforward policy is to delete RT records for both committed and dismissed
transfers the same way.

21

Received RejectedTransfer message

When client implementations process a RejectedTransfer message, they should
first try to find a matching RT record in the client’s database.54 If a matching
record exists, and its status is "initiated", the transer can be reported as unsuc-
cessul, and the RT record MAY be deleted; otherwise the message SHOULD be
ignored.

Received PreparedTransfer message

When client implementations process a PreparedTransfer message, they MUST
first try to find a matching RT record in the client’s database. If a matching record
does not exist, the newly prepared transfer MUST be immediately dismissed55;
otherwise, the way to proceed depends on the status of the RT record:

initiated The values of debtor_id, creditor_id, and transfer_id fields in
the received PreparedTransfer message MUST be stored in the RT record,
and the status of the record MUST be set to "prepared".

prepared The values of debtor_id, creditor_id, and transfer_id fields in
the received PreparedTransfer message MUST be compared to the values
stored in the RT record. If they are the same, no action SHOULD be
taken; if they differ, the newly prepared transfer MUST be immediately
dismissed.

settled The values of debtor_id, creditor_id, and transfer_id fields in
the received PreparedTransfer message MUST be compared to the values
stored in the RT record. If they are the same, the same FinalizeTransfer
message (except for the ts field), which was sent to finalize the transfer,
MUST be sent again; if they differ, the newly prepared transfer MUST be
immediately dismissed.

Important note: Eventually a FinalizeTransfer message MUST be sent for
each "prepared" RT record, and the record’s status set to "settled". Often this
can be done immediately. In this case, when the PreparedTransfer message is
received, the matching RT record will change its status from "initiated", directly
to "settled".

Received FinalizedTransfer message

When client implementations process a FinalizedTransfer message, they should
first try to find a matching RT record in the client’s database. If a matching
record exists, its status is "settled", and the values of debtor_id, creditor_id,

54The matching RT record MUST have the same coordinator_type, coordinator_id, and
coordinator_request_id values as the received RejectedTransfer, PreparedTransfer, or Final-
izedTransfer message. Additionally, the values of other fields in the received message MAY be
verified as well, so as to ensure that the server behaves as expected.

55A prepared transfer is dismissed by sending a FinalizeTransfer message, with zero
committed_amount.

22

and transfer_id fields in the received message are the same as the values stored
in the RT record, then the outcome of the finalized transfer can be reported, and
the RT record MAY be deleted; otherwise the message SHOULD be ignored.

AD record
Client implementations that manage creditor accounts, MUST maintain ac-
count data records (AD records) in their databases, to store accounts’ current
status data. The primary key for account data records is the (creditor_id,
debtor_id, creation_date) tuple.56 As a minimum, AD records MUST also
be able to store the values of last_change_ts and last_change_seqnum fields
from the latest received AccountUpdate message, plus they SHOULD have a
last_heartbeat_ts field.

Received AccountUpdate message

When client implementations process an AccountUpdate message, they should
first verify message’s ts and ttl fields. If the message has "expired", it SHOULD
be ignored. Otherwise, implementations MUST verify whether a corresponding
AD record already exists:57

1. If a corresponding AD record already exists, the value of its
last_heartbeat_ts field SHOULD be advanced to the value of
the ts field in the received message.58 Then it MUST be verified whether
the same or a later AccountUpdate message has been received already.59
60 If the received message turns out to be an old one, further actions
MUST NOT be taken; otherwise, the corresponding AD record MUST be
updated with the data contained in the received message.

2. If a corresponding AD record does not exist, one of the following two actions
MUST be taken: either a new AD record is created, or a ConfigureAccount

56Another, probably more practical alternative, is the primary key for AD records to be the
(creditor_id, debtor_id) tuple. In this case, later creation_dates should simply override
earlier creation_dates.

57The corresponding AD record would have the same values, as in the received message, for
the fields included in the record’s primary key.

58That is: the value of the last_heartbeat_ts field SHOULD be changed only if the value
of the ts field in the received AccountUpdate message represents a later timestamp. Also,
care SHOULD be taken to ensure that the new value of last_heartbeat_ts is not far in the
future, which can happen if the server is not behaving correctly.

59creation_date, last_change_ts, and last_change_seqnum can be used to reliably deter-
mine the correct order in a sequence of AccountUpdate massages, even if the changes occurred
in a very short period of time. When considering two changes, creation_date fields MUST be
compared first, if they are equal last_change_ts fields MUST be compared, and if they are
equal, last_change_seqnum fields MUST be compared as well.

60Note that when comparing "seqnum" fields, server implementations MUST correctly deal
with the possible 32-bit integer wrapping. For example, to decide whether seqnum2 is later than
seqnum1, the following expression may be used: 0 < (seqnum2 - seqnum1) % 0x100000000 <
0x80000000. Timestamps must also be compared with care, because precision might have been
lost when they were saved to the database.

23

message is sent to schedule the account for deletion.61

If for a given account, AccountUpdate messages have not been received for a
very long time (1 year for example), the account’s AD record MAY be removed
from the client’s database.62

Received AccountPurge message

When client implementations process an AccountPurge message, they should first
verify whether an AD record exists, which has the same values for creditor_id,
debtor_id, and creation_date as the received message. If such AD record
exists, it SHOULD be removed from the client’s database; otherwise, the message
SHOULD be ignored.

AL record
Client implementations MAY maintain account ledger records (AL records) in
their databases, to store accounts’ transfer history data. The main function of AL
records is to reconstruct the original order in which the processed AccountTransfer
messages were sent. 63 The primary key for account ledger records is the
(creditor_id, debtor_id, creation_date) tuple. As a minimum, AL records
must also be able to store a set of processed AccountTransfer messages, plus a
last_transfer_number field, which contains the transfer number of the latest
transfer that has been added to the given account’s ledger.64

Received AccountTransfer message

When client implementations process an AccountTransfer message, they must
first verify whether a corresponding AL record already exists.65 If it does not
exist, a new AL record may be created.66 Then, if there is a corresponding

61In this case, the negligible_amount field MUST be a set to some huge number, so as to
ensure that the account will be successfully deleted by the server.

62The AD record’s last_heartbeat_ts field stores the timestamp of the latest received
account heartbeat.

63Note that AccountTransfer messages can be processed out-of-order. For example, it is
possible transfer #3 to be processed right after transfer #1, and only then transfer #2 to be
received. In this case, transfer #3 should not be added to the account’s ledger before transfer
#2 has been processed as well. Thus, in this example, the value of last_transfer_number
will be updated from 1 to 3, but only after transfer #2 has been processed successfully.

An important case which client implementations should be able to deal with is when, in the
previous example, transfer #2 is never received (or at least not received for a quite long time).
In this case, the AL record should to be "patched" with a made-up transfer, so that the record
remains consistent, and can continue to receive transfers.

64Note that AccountTransfer messages form a singly linked list. That is: the
previous_transfer_number field in each message refers to the value of the transfer_number
field in the previous message.

65The corresponding AL record would have the same values for creditor_id, debtor_id,
and creation_date as the received AccountTransfer message.

66The newly created AL record must have the same values for creditor_id, debtor_id, and
creation_date as the received AccountTransfer message, an empty set of stored AccountTrans-
fer massages, and a last_transfer_number field with the value of 0.

24

AL record (an alredy existing one, or the one that have been just created), the
following steps must be performed:

1. The received message must be added to the set of processed AccountTransfer
messages, stored in the corresponding AL record.

2. If the value of the previous_transfer_number field in the received mes-
sage is the same as the value of the last_transfer_number field in the
corresponding AL record, the last_transfer_number’s value must be
updated to contain the transfer number of the latest sequential transfer in
the set of processed AccountTransfer messages. Note that when between
two AccountTransfer messages that are being added to the ledger, there
were one or more negligible transfers, a dummy in-between ledger entry
must be added as well, so as to compensate for the negligible transfers (for
wihch AccountTransfer messages have not been sent).

Note: Client implementations should have some way to remove created AL
records that are not needed anymore.

25

	Overview
	Incoming messages
	ConfigureAccount
	PrepareTransfer
	FinalizeTransfer

	Outgoing messages
	RejectedConfig
	RejectedTransfer
	PreparedTransfer
	FinalizedTransfer
	AccountUpdate
	AccountPurge
	AccountTransfer

	Requirements for Client Implementations
	RT record
	Received RejectedTransfer message
	Received PreparedTransfer message
	Received FinalizedTransfer message

	AD record
	Received AccountUpdate message
	Received AccountPurge message

	AL record
	Received AccountTransfer message

